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Dorsal Hippocampus ERK2 Signaling
Mediates Anxiolytic-Related Behavior
in Male Rats
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Abstract

Background: Anxiety disorders are the most common neuropathologies worldwide, but the precise neuronal mechanisms

that underlie these disorders remain unknown. The hippocampus plays a role in mediating anxiety-related responses, which

can be modeled in rodents using behavioral assays, such as the elevated plus maze. Yet, the molecular markers that underlie

affect-related behavior on the elevated plus maze are not well understood.

Methods: We used herpes simplex virus vector delivery to overexpress extracellular signal-regulated kinase-2, a signaling

molecule known to be involved in depression and anxiety, within the dorsal hippocampus of adult Sprague-Dawley male rats.

Three days post virus delivery, we assessed anxiety-like responses on the elevated plus maze or general locomotor activity

on the open field test.

Results: When compared to controls, rats overexpressing extracellular signal-regulated kinase-2 in the dorsal hippocampus

displayed an anxiolytic-like phenotype, per increases in time spent in the open arms, and less time in the closed arms, of the

elevated plus maze. Furthermore, no changes in locomotor activity as a function of virus infusion were observed on the open

field test between the experimental groups.

Conclusion: This investigation demonstrates that virus-mediated increases of extracellular signal-regulated kinase-2 sig-

naling, within the hippocampus, plays a critical role in decreasing anxiogenic responses on the rat elevated plus maze. As

such, our data provide construct validity, at least in part, to the molecular mechanisms that mediate anxiolytic-like behavior

in rodent models for the study of anxiety.
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Introduction

Anxiety disorders constitute the most common forms of
psychiatric illnesses worldwide.1,2 These disorders are
associated with increased health-care costs and exhibit
high comorbidity with other mental diseases, such as
depression and posttraumatic stress disorder.3,4 Despite
their high prevalence, the specific neurobiological mech-
anisms underlying these affect-related neuropathologies
remain to be fully understood.

Members of the mitogen-activated protein kinases
(MAPKs) function by integrating extracellular signals
received by membrane receptors and transferring them
through a phosphorylation cascade into the nucleus,

thus regulating gene expression.5 Although they are
ubiquitously expressed, MAPKs have been found to
play critical functions in the mammalian brain, ranging
from synaptic plasticity, long-term potentiation, and
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neuronal differentiation.6 Within the MAPK superfam-

ily, the actions of members of the subfamily of extracel-

lular signal-regulated kinase (ERK), particularly the

ERK1 and ERK2 isoforms, have been extensively char-

acterized in the central nervous system, and it is becom-

ing increasingly clear that they play a prominent role in

several psychiatric diseases, including depression and

anxiety disorders.7–10

Preclinical pharmacological experiments have been

useful in establishing a link between anxiety-related

behavior and the ERK signaling pathway.11–13

However, despite significant efforts, there are currently

no pharmacological agents that directly target individual

and/or specific ERK isoforms for activation or inhibi-

tion,14,15 which in turn, limit our understanding on the

role that each MAPK isoform plays in the regulation of

mood-related behavior. Addressing this issue, we have

previously shown that the upregulation of ERK2, via

viral vector delivery in the dorsal hippocampus, reduces

despair-related behavior in male rats, as determined in

the forced swim test.16 Conversely, stress-induced

decreases of ERK-related signaling within this brain

region has been linked to enhanced anxiety-like behav-

ior,17 which can be successfully studied in rodents using

the elevated plus maze (EPM)—a behavioral paradigm

with high face and predictive validity.18–20 Yet, to date,

the precise role that ERK2 plays in the regulation of

anxiety-related behavior has not been clearly delineated.

Therefore, in order to determine if the upregulation of

hippocampal ERK2 signaling is involved in the modu-

lation of anxiety-like behavior, we combined a targeted

molecular approach of ERK2 overexpression in the rat

dorsal hippocampus, with behavioral assessment using

the EPM and open field tests.

Materials and Methods

Animals

Male Sprague-Dawley rats (250–275 g) were obtained

from Charles River Laboratories (Hollister, CA). Rats

were maintained in a humidity- and temperature-

controlled animal facility with a 12-h light/dark cycle

and were subjected to a one-week acclimation period

before surgery and the start of experiments. Rats were

housed in pairs in standard laboratory polycarbonate

cages (Ancare, model R20, Bellmore, NY) along with

sani-chip bedding (P.J. Murphey San-ChipsVR , Murville,

NJ) and had access to food and water ad libitum.

Animals were cared for in accordance with the

National Institutes of Health Guide for the Care and

Use of Laboratory Animals21 and with approval from

the Institutional Animal Care and Use Committee.

Virus Vectors

Overexpression of ERK2 was achieved by microinjecting

herpes simplex virus (HSV) vectors encoding green fluo-

rescent protein (GFP)-alone or a GFP-wild-type ERK2

(wtERK2) in the dorsal hippocampus. Virus was pack-

aged in a p1005 plasmid with expression of the target

gene (i.e., ERK2) driven by an HSV IE 4/5 promoter,

while GFP expression was driven by a CMV promoter.22

All viruses were diluted in phosphate-buffered saline

(PBS)þ 10%sucrose and 20mM HEPES (pH 7.3). For

further specifics on vector design, construction, neuro-

tropic effects, as well as in vitro and in vivo validation, see

previously published work.23,24 Highest levels of trans-

gene expression by the HSV vectors were reached three

days after surgery. Therefore, behavioral experiments

began after this time period (see Figure 1(a) for experi-

mental design).25,26 Transgene expression was restricted

to an area of �1 mm2 surrounding injection site, as pre-

viously demonstrated.27,28 Behavioral tests (described

below) were recorded using a video tracking system

(Ethovision XT, Noldus, Leesburg, VA).

Animal Surgery

Stereotaxic surgeries were conducted for selective deliv-

ery of the HSV vectors. Rats were anesthetized with an

intramuscular injection of ketamine/xylazine cocktail

(80/10mg/kg), with subcutaneous atropine (0.25mg/kg)

administered to reduce bronchial secretions; bilateral

microinjections of either GFP or GFP-wtERK2 vectors

were then administered (1ml per hemisphere over a 10-

min period) into the dorsal hippocampus (coordinates

from Bregma: anteroposterior: �3.8, lateral: �2, dorso-

ventral: �3.2mm below dura) using a 32-gauge

Hamilton syringe.16,29 Postsurgical discomfort was min-

imized by applying the local anesthetic bupivacaine.

Elevated Plus Maze

The EPM was used to evaluate anxiety-like behavior.30

The maze consisted of two perpendicular, intersecting

runways (12 cm wide� 100 cm long): one with tall,

closed arms (30 cm), and the other with open arms, con-

nected by a central area. The maze was elevated 1m from

the floor in a behavioral testing room under controlled

lighting (�90 lux) conditions. Rats were placed initially in

the central area, facing one of the open arms, and groom-

ing counts, as well as the cumulative time spent in the

closed and open arms was recorded for 5 min.31

Locomotor Activity

Locomotor activity of GFP-alone or GFP-wtERK2 rats

was assessed as distance traveled (cm) in an open field

apparatus (63� 63� 26 cm) for 5min.
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Histology and Transgene Detection

The sites of HSV vector injection were confirmed in all
rats. Animals were euthanized with an overdose of
sodium pentobarbital administered 1 h after behavioral
assessment, followed by transcardial perfusion with
0.9% saline and 4% paraformaldehyde (PFA). Brains
were excised and postfixed by overnight immersion
in 4% PFA and stored in 20% glycerol. Hippocampal
coronal sections (45 mm) were obtained on a microtome
and stored in 0.1M sodium phosphate buffer containing
0.05% sodium azide. Tissue sections were used to
examine GFP expression within the hippocampus as pre-
viously described.32 Hippocampal free-floating coronal
sections were blocked in 3% normal donkey serum
(NDS), followed by overnight incubation with primary
antibody (rabbit anti-GFP antibody, 1:1000; Abcam,
Cambridge, MA) along with 0.3% Triton X-100
and 1% NDS. Tissue was then incubated with
anti-rabbit secondary antibody (1:1000; Jackson
ImmunoResearch, West Grove, PA) for 2 h at room
temperature. Immunostained sections were mounted on
microscope slides, dehydrated in ethanol and Citrosolv,
and coverslipped with DPX (Sigma, St. Louis, MO).

Slides were visualized and photographed using a confo-
cal fluorescence microscope equipped with a digital
camera.

Statistical Analysis

Rats were randomly assigned to receive either HSV-
GFP-alone or HSV-GFP-wtERK2 vectors, three
days prior to behavioral testing. Statistical testing was
carried out using two-tailed Student’s t test. Data are
expressed as mean� standard error of the mean.
A value of p< 0.05 was adopted to determine statistical
significance.

Results

Figure 1(b) depicts the hippocampal region targeted for
microinjection delivery of HSV vectors. As observed in
Figure 1(c), immunofluorescence confocal microscopy
revealed that ERK2 was successfully overexpressed in
the dorsal hippocampus as previously shown.16,27

Using the EPM test to determine anxiety-like behav-
ioral responses to GFP-wtERK2 overexpression in the
dorsal hippocampus, we found that, when compared to

Figure 1. Experimental design and virus-mediated overexpression of ERK2 in the rat dorsal hippocampus. (a) Male rats were infused with
HSV vectors overexpressing GFP-alone or a GFP-wtERK2 on day 1 (surgery) and allowed to rest for 48 h (days 2–3). On day 4, rats were
tested on the EPM or the OFT. (b) Region of the hippocampus to which microinjections of HSV vectors was targeted (AP: �3.8, lateral:
�2, dorsoventral: �3.2mm below dura). Adapted from The Rat Brain in Stereotaxic Coordinates.53 (c) Cells expressing GFP-wtERK2 (green,
cyanine 2) fluorescence (magnification, �400). GFP: green fluorescent protein; EPM: elevated plus maze; OFT: open field test; AP:
anteroposterior; wtERK2: wild-type extracellular signal-regulated kinase-2.
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their GFP-only counterparts (n¼ 4), GFP-wtERK2

(n¼ 5) rats spent significantly more time in the open

arms (t7¼ 2.78, p< 0.05; Figure 2(a)) and less time in

the closed arms (t7¼ 3.03, p< 0.05; Figure 2(b)) of the

EPM. No changes were observed in grooming counts

(t7¼ 0.26, p> 0.05; Figure 2(c)). Lastly, Figure 2(d)

shows that hippocampal overexpression of ERK2

(n¼ 5) did not influence locomotor activity as measured

in the open field test when compared to GFP-only rats

(n¼ 5; t8¼ 1.12, p> 0.05).

Discussion

In this study, we aimed to determine the behavioral effect

of viral vector-mediated ERK2 overexpression in the

dorsal hippocampus of adult male Sprague-Dawley rats,

using the EPM as a tool to assess anxiety-related behav-

ior.30 Our results indicate that rats overexpressing GFP-

wtERK2 in the dorsal hippocampus spent more time in

the open arms and less time in the closed arms of the

EPM, without overall changes in locomotor activity.

These behavioral responses are consistent with an

anxiolytic effect,18 a behavioral outcome that is commonly

reported after acute benzodiazepine (BDZ) exposure,33,34

or chronic administration of selective serotonin reuptake

inhibitors (SSRIs).31,35 Of note, these two classes of drugs,

which are used clinically to treat anxiety-related disor-

ders,36 have been reported to mediate their therapeutic

effects via neuronal ERK signaling regulation.

Specifically, treatment with the BDZ drug diazepam has

been shown to increase the levels of ERK1/2 in the rat

hippocampus,37 and the administration of the SSRI fluox-

etine similarly enhances ERK1/2 signaling across different

brain regions,38 including the hippocampus39; brain cir-

cuitry that is activated during both stress and anxiety

responses.40 Likewise, activation of the ERK pathway

via treatment with brain-derived neurotrophic factor

results in elevated levels of activated ERK2 as well as

reduced anxiety-like behavior in mice.41 Conversely, phar-

macological inhibition of hippocampal ERK signaling in

rats has been shown to induce anxiety-like behavior in the

EPM.11 However, we must note that the role of ERKs, as

a molecular link between stress and anxiety, is equivocal

across the literature.42–45

Figure 2. Herpes simplex virus overexpression of ERK2 (wtERK2) mediates an anxiolytic-like effect in the elevated plus maze. When
compared to controls (GFP, n¼ 4), male rats overexpressing wtERK2 (n¼ 5) in the dorsal hippocampus spent higher time in the open
arms (a), along with decreased time in the closed arms (b), of the maze. No differences in grooming counts (c) or distance traveled (d,
n¼ 5 per group) were noted between the experimental groups. *p< 0.05. GFP: green fluorescent protein; wtERK2: wild-type extracellular
signal-regulated kinase-2.
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While previous work has suggested that BZD and

SSRI medications mediate their therapeutic effects via

increases in hippocampal ERK1/2 signaling, our exper-

imental approach confirms that the upregulation of

ERK2 specifically, in the stress-naı̈ve rat’s dorsal hippo-

campus, is a contributor in the modulation of anxiety

(Figure 2) and despair-like behavior.16 Importantly, we

do so by using a genetically targeted approach, provid-

ing construct and mechanistic validity to the male rat

EPM test. Furthermore, our findings expand on recent

work indicating that the ventral hippocampus also mod-

ulates behavioral responses in the EPM46,47—however,

whether anxiolytic behavior in this paradigm is ERK2-

dependent, within the ventral portion of the hippocam-

pus, remains to be explored. Unfortunately, a limitation

of the current investigation is that we did not include

female rats in our experimental design, reducing the

interpretability of our findings to the clinical setting,

where anxiety-related disorders are more frequently

diagnosed in the female, versus male, population.48

Lastly, given that ERK1 and ERK2 share over 80%

homology, it will be important to evaluate how selective

regulation of ERK1 influences responses on the EPM,

since ERK1-alone has been found to modulate behavior

differentially in other tasks.49–51

Conclusion

The neurobiological correlates between stress and anxi-

ety are not well understood. Previous animal and human

postmortem studies have shown that ERKs, across dif-

ferent brain regions,10,16,23,52 play a crucial role in mod-

ulating affect-related responses. Here, we expand this

work to include a role for ERK2 specifically, within

the dorsal hippocampus of rats, in mediating anxiolytic

behavior when assessed on the EPM—a classic model

used to screen for anxiolytic or anxiogenic compounds.

Indeed, virus-mediated increases of ERK2 resulted in

animals spending more time in the open arms, and

lower time in the closed arms, of the EPM; an anxiolytic

response mimicking the effects of traditional pharma-

ceutical agents used for the management of anxiety

(i.e., SSRIs and BDZs). As such, our data may prove

insight for the development of pharmaceutical agents, or

alternative strategies, to treat/prevent the development

of anxiety-related disorders.
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